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We report on two photoluminescent triblock rodcoil molecules
that self-organize into thick polar films that may contain up to
10 000 molecular layers. The design of molecules that assemble
into polar materials is an important objective for many reasons.
One of them is that such materials could open access to films
much thicker than molecular dimensions that can adhere to
substrates and present a surface of receptors or catalytic sites
regardless of substrate roughness. These solids also offer access
to properties that require absence of a center of inversion (e.g.,
second harmonic generation, piezoelectricity, pyroelectricity,
ferroelectricity). In centrosymmetric systems, the vanishing of
theâ tensor (responsible for frequency doubling) eliminates the
possibility of generating a second-order nonlinear optical (NLO)
signal. Several strategies have been used to externally control
the formation of noncentrosymmetric multilayers such as Lang-
muir-Blodgett (LB) films of molecules and electrical poling.1-6

For example, Marks et al. reported multilayer films of up to 5
chromophore layers (∼100 nm thick) with remarkable retention
of noncentrosymmetry within the films.7 In addition, an electri-
cally poled smectic A liquid crystal (∼10 µm thick) containing
NLO chromophores attached to siloxane rings has shown
thermally stable second-order NLO activity.8 In this general
context, self-organizing polar stacks of molecules would be
extremely useful indeed.
Our laboratory recently reported on a new class of supramo-

lecular materials composed of miniature triblock copolymer
molecules1 (Figure 1).9 These molecules form films composed
of mushroom shaped supramolecular aggregates, each containing
about 100 molecules. Interestingly, these supramolecular nano-
structures organize into layers that stack with “caps to stems”
polar order. This was confirmed by second-order NLO measure-
ments of solvent cast films. Transmission electron microscopy
showed these layers stack over thicknesses on the order of 1µm.
We report here on the self-organized films formed by triblock

molecules2 and 3 containing conjugated phenylene vinylene
segments (Figure 1). Interestingly, we found that polar order of
supramolecular units is also observed in these systems suggesting

that supramolecular rather than simply molecular effects may be
responsible for the formation of these polar solids. This observa-
tion demonstrates that additional chemical functionality can be
added to the system without disrupting the organizational energet-
ics behind polar ordering. Furthermore, a special feature of the
systems described here is their large thickness which varies
between 20 and 110µm. This corresponds to the dimensions of
2 500-13 750 stacked molecular layers. The specific modifica-
tions studied here involved the replacement of the terminal
biphenyl hydroxyl of1 with dimers of phenylene vinylene that
are either cyano (polar),2, or hydrogen (apolar),3, terminated.10
The synthesis and comprehensive characterization of these two
triblock molecules will be reported elsewhere.11 The rodcoil
molecules were characterized by1H NMR and gel permeation
chromatography.
Small-angle X-ray scattering (SAXS) scans indicate these

molecules pack into layers with ad-spacing of roughly 8 nm
which is consistent with monolayer as opposed to bilayer
formation. The length of an average rodcoil molecule containing
a trans phenylene vinylene conformer is 10 nm.12 The charac-
teristic submolecular spacing observed is consistent with, but does
not demonstrate, bulk polar order in the film. To establish if
bulk polar order occurred, we investigated second harmonic
generation (SHG) in these supramolecular films. Films of2 and
3 were solution cast from CHCl3 onto glass slides and allowed
to dry overnight under nitrogen. SHG measurements were then
obtained using a 1064 nm infrared laser beam. Profilometry and
SHG scans across the surface of the films are shown in Figure 2
revealing essentially identical fluctuations in the film thickness
and intensity of green photons (532 nm).13 Particular care was
taken to prepare films with a wide variation in thickness across
the diameter of the film. By varying the film thickness within
the sample, direct measurements of thickness and SHG could be
obtained from the same film. The thickness of these films range
between 20 and 110µm implying that stacks of up to tens of
thousands of molecular layers preserve global polarity. Since the
SHG intensity scales with film thickness, we infer polar stacking
is a bulk property of the supramolecular films and not the result
of loss of centrosymmetry at interfaces.14,15 Quadrupolar SHG
is also unlikely in our films since this effect is much weaker and
observed in systems with higher symmetries.16,17 Furthermore,
the solid films exhibit strong photoluminescence when excited
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by 365 nm UV radiation. As shown in Figure 2, solid-state
photoluminescence is particularly strong in films formed by
rodcoil material2.

We have demonstrated the potential chemical versatility of
supramolecular materials formed by triblock rodcoil molecules.
We can anticipate that a large variety of chemical structures will
exhibit similar self-organizing behavior to that originally reported,9

including molecules lacking a polar terminus. The nanostructured
materials described here contain thousands of molecular layers
organized with polar order and give rise to strong photolumines-
cence. On the basis of these observations, we believe the
chemistry of very large supramolecular aggregates can deliver
designed materials with extremely valuable and unexpected
properties.
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Figure 1. Chemical structure of triblock rodcoil molecules1-3. These molecules contain average degrees of polymerization of 9 for styrene and
isoprene, based on1H NMR and GPC, covalently grafted to a chemically defined rigid block.

Figure 2. (Top) Profilometry (in blue) and SHG (in red) data obtained
at different positions in supramolecular film of rodcoil2. The scans show
essentially identical fluctuations in both signals. (Bottom) Similar
profilometry (in blue) and SHG (in red) data for a supramolecular film
of rodcoil 3. Also shown at the left are the photoluminescent solutions
and solid films of both materials irradiated with 365 nm UV light.
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